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Abstract

The structure of electrostatic oscillations is determined for a

cold plasma with a zero order density gradient along the magnetic field.

A set of well-behaved structures, bounded at, plasma resonance, exists for

discrete values of perpendicular wavenumber. Under these conditions the

plasma acts as a waveguide. A Green's function suitable for sources

located in the overdense region of the plasma is constructed from these

vaveguide-like solutions
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1. Introduction

Magnetized plasmas with a zero order density gradient (VN0) along the

magnetic field (Bo) can support a rich variety of electrostatic oscillations.

The variety of mode structures in this geometry arises from the close juxta-

position of the plasma (w p) and upper hybrid (w uh) resonances for wave fre-

quencies w greater than the electron gyrofrequency 0, as sketched in Fig. 1.

The majority of theoretical studies have concentrated on two extreme cases.

Either the plasma is urnagnetized (B0) and the electrostatic structure

associated with the plasma resonance is studied, or the density gradient is

perpendicular to the magnetic field (VN0 B0 -O) and the electrostatic struc-

tures around Wuh are investigated. Each of these two cases has received

considerable theoretical' 2 and expeimental1 ,3 attention and numerous interesting

effects have been found for each case.

In the geometry considered here (VNo II B ) the effects of both reso-

nances must be considered simultaneously. In fact, WKB analysis of a wave

propagating obliquely to B0 indicates that the upper hybrid resonance is

actually a cutoff for parallel wAvenumber (k,,-O) while the plasma resonance

is a true resonance (in that k,, + -). Due to the coupling between the w

and Wh points and the need to consider mode conversion near the W point,
.h p

the general problem of wave excitation by an external source is rather cam-

plicated both physically and mathematically. Although we have made some

progress towards a solution of the general problem we concentrate our atten-

tion here on a rather specific but interesting aspect of the electrostatic mode

structures. Specifically, we concentrate on a description of new, purely

cold, mode structures which are supported by the plasma for a discrete set

of perpendicular wavunmbers satisfying the condition,

. ... .. '.', ', "-/', i '.:.- ' / " .' .. '. -' . '- "' " .' ,". - . --' .'*" , ' " ." " . /
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2
klLA - [1 (0/2) ](2j + 1) (1)

j " 0,1,2,...

Where As refers to the distance between the upper hybrid and plasma resonance

points and 0 is the electron gyrofrequeney. These modes are trapped In

the region between the w and wuh points. The wave energy propagates across

the nagnetic field and the region behaves as. a waveguide. We demonstrate that

exact solutions to the cold plasna differential. equation can be found that

are well behaved when the condition given In Eq.. (1) is satisfied. With these

solutions we construct a Green's function suitable for sources located in

the overdense region of the plasma (w < p)

Aside from the Intrinsic interest of the quantized mode structures,

their existence can be of relevance to the understanding of resonant absorp-

tion of radio waves in the auroral ionosphere or in certain laboratory devices.

In addition this study gives a clear example of a node structure which de-

pends explicitly upon the plasma Inhamogenity and Is not contained in the

W description which typically forms the basis for physical intuition.

%1
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1I. Mode Structure

Consider an electrostatic oscillation propagating in an inhomogeneous

plasma in which the zero order density gradient points along the magnetic

field with a waveform given by

0 - #(z) ezp[i(kx - (t)] + c.c. (2)

The direction along the gradient is denoted by z while x denotes the direction

perpendicular to it, as illustrated in Fig. 1. The spatial structure of

O(z) is determined by Poisson's equation

9- k. e. - s(z) (3)
z

where the perpendicular and parallel conponents of the dielectric tensor are

cz and c,,, respectively. In a cold plasma with varying electron density

el- p 2 (z)/(W 2 2  ,,- - W2 /W 2 (4)

where wp(z) - 4we 2o(z)/m with e,m the electron charge and mass. In Eq. (3),

S(z) represents a source of oscillations at frequency w which may consist,

for example, of eternally driven grids Immersed in the plasma or of charge

oscillations induced on the density gradient by a remotely launched electro-

magnetic wave. Regardless of the particular nature of the source the

system response can be found by solving Eq. (3) with an idealized delta

function driver. Mathematically, this is equivalent to solving for the

Green's function. Once the Green's function has been found the system response
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to an arbitrary source can be calculated.

The Green's function for Eq. (3) can be constructed from linear combin-

ations of the solutions to the corresponding homogeneous equation (i.e. S(z)-O)

which satisfy the proper boundary conditions. To obtain solutions to the

homogeneous equation we consider a density profile which varies linearly

with z in the region of interest. The dielectric components then take the

form

,, Z/L (z/L -Y )/(1 -Y) (5)

where Y 11/w and L is the density scale length. The point z = 0 now

corresponds to plasma resonance w - wp, The overdense region of the plasma

corresponds to z < 0, and the upper hybrid cutoff is located at z - LY

Since we assume w > 0, Y < I and we introduce the dimensionless quantities

-21kjz/(1 Y (6a)]
and

0 - Ik±lL Y2/2(1 - Y2) (6b)

so that the homogeneots form of Eq.. (3) becomes

d d "-;(C4- 0) (7)

Using the transformation

) f(C) exp(-CI2) (8)
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Eq. (7) becomes

d2 d
d + ( - ) f-0 (9)

C) !L (19)

Eq. (9) has the form of Kummer's differential equation which has two independent

solutions usually denoted by U(a,b,C) and H(a,b,C). The two independent para-

meters a and b hre have the values a I- and b - 1. Since the Wronskian

of U and M is zero for certain values of a and b we use a different com-

bination of linearly independent solutions to construct the Green's function.

In the notation of Slater 4 , the solutions we use are

y U(R,b,g) (10)

and

-7 - eCU(b-a,b,-C)

The Wronskian of y5 and 3 is, for real 9

UW(ys.,) - -b exp a + iwr(a - b)] (11)

which is not zero for any finite value of a or b.

The Green's function is a solution to the equation (with a - 1)

j-.[9-v(C o A - (C/4 - B)G(C,Co) - -4waL( - C (12)

where a is the effective charge density per unit area of the source.

:11
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A solution to Eq. (12) can be constructed using linear combinations

of the solutions to the homogeneous Eq. (7) on either- side of the

source. We denote these combinations by

GC, c' exp(-9/2)y + c exp(-9/2)y ; o (13)
+1 5 12 77 0

and

G< = c exp(-C/.2)y + c exp(-9/2)y ; < to (14)

The solutions G> and G< must satisfy the following ,conditions to form

a physically acceptable Green's function:

1) They must be continuous at C - 0

G> G< (Co) (15)

2) The derivative at 0 - ° must satisfy

dG> dG<I .4oG < -4wcL (16)

3) Both C> and C< must vanish as Il-. and,
4) G> and G< must be bounded for real 9.

To address point 3 we consider the asymptotic behavior of the function U.

For .

U(a,b,t) (C)-a (17)

:.: :::; ::::..........................-.:":;:::": :::' ::: ,:: . ::- -- i-::: :-•: : "-,"P
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Using Eq. (17) the asymptotic behavior of the components of G> and G< are

' ecp(-C/2)y -. exp(-4/2)(C:)011 (18a)

and

exp(-C[/2)y 7 -. ezp(-K/2) (_&)-IO-h (18b))

where we have used the values of a and b appropriate for Eq. (9). From Eq. (18)

it is clear that in order for G> and G to vanish as +

c 1 2 - c 2 1 -0 (19)

Thus the Green's function must be constructed from

G> cllexp(-C/2)y5  C > C (20a)

-=c 22 ezp(-C/2)Y 7  ; <  0 (20b)

In considering the boundedness oi the solutions (point 4) the behavior

of the solutions at plama resonance (C - 0) is crucial. For the case under

* consideration (b - 1) the behavior of the functions U(a,l,F) for C << 1 is

U(a,i,) - in c/Fr(a) (21)

The logrithalu singularity for solutions near the origin when r(a) is finite

apparently Indicates the buildup of charge near the resonant layer. In this

4 .% , '" " " : ' '- - ." ' ,, . - '- ." ' ' ' " " J - " : . - . " . . , , . - ,_ / - ' '' ," "
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case, the solutions C and G< of Eq. (20) can not be used to construct a

physically acceptable Green's function. This situation indicates that the

cold plasma description is inadequate to describe the physical processes

occurring near the resonance layer. Thermal terms must then be retained to

adequately describe the plasma. However, Eq. (21) suggests the possibility

of obtaining physically acceptable solutions when r(a) - 0, i.e. whenever

a is zero or a negative integer. Physically this Implies it is possible to obtain

a purely cold mode which vanishes at infinity and is bounded at plasma reso-

nance.

The parameter a can indeed have zero or negative integer values for

certain perpendicular wavenumbers. Thus we expect bounded solutions to exist

whenever a -; -I -j (j - 0,1,2,...). Using Eq. (6b) to express this con-

dition in terms of physical variables, k, must satisfy .,

Ik.IL - (2j + 1)(1 - Y2 ) /y 2  (22)

For these discrete or -tantized values of k. the Kummer function U(a,l,E)

becomes a polynomial, namely,

U(-Jll = (-1)J1! L(C) (23) 7

thwhere Lj( ) is the J-, zero order Laguere polynomial which is, of course,

finite at the origin. Since the parameter B is a positive quantity the solution

G< which is proportional to U(BOA,I,-C) is not bounded at the origin.

Thus in addition to satisfying Eq. (22) we must also require, for a bounded

Green's function, that the source be in the overdense region of the plasma, ]
: " '.. .. . .. .. .. .. .. . .. .. ..'. ..."""'' "'"" """" ""•"" " ." -"""" . .

er
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r
(i. e. 0 < 0) as illustrated in Fig. 2. Thus the solutions G> and G. vanish

at infinity and are everywhere bounded for a = -j and E° < 0, in which case

K."4

KG c exp(-E/2)(-l)jJ! Lj(4) (24a)

F > 1I0G> =c, exp(-E/2) L i(E) E > &0

and

G< c exp(-6/2)y 7  (24b)
< .227

G c 2ep(-4/2)U(J+1,1,-E) E < Eol • 2

?i The constants Cl and c2 can be found using Eqs. (15) and (16). From

Eq. (15) we find

::c =c exp([Eo1) L i(-[6o1)/U(J+1.,EoD) (25)
.,2 0

The derivatives of G> and G< at " -t o  1 - 1 are

G- c exp(f90 /2) - L (-1o]) + Lj(-1gol)] (26a)

G- c exp(-IE 1/2)[1-U(l+j,x,I1o) + U'(j+1,x,Jc o)] (26b)

where the prime indicates a derivative with respect to E. Inserting Eqs. (26a)

and (26b) in Eq. (16) and using Eq. (25) for c together with the expression for2

the ronskian [Eq. (11)] we obtain

c -- 4waL exp[-IEo1/2](Ji) U (J+1,1,jto1) (27a)
1
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and

c2 -- 4woL exp['lo /2"(JI) L (-ICo0) (27b)

Using Eqs. (27ab) the Green's function appropriate for sources on the over-

dense side at discrete values of Ikl is

C>- -(JI) 4waL U(J+1,,Io 1) L (9) exp[-(g - o)/2] (28a)

9 > go-

G -(Jr) 4roL L (-I9oI) U(J+1,1,-9) exp[(E - 0o)/2] (28b)

E<o< 0
0

p
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III. DiscussionI
It has been demonstrated that forcertain discrete values of perpen-

dicular wavenumber, it is possible to construct a Green's function for electro-

static modes in a magnetized cold plasma with a longitudinal density gradient.

The sources must be located in the overdense region of the plasma. An ex-
.

*: ample of the Green's function for j - 3 in Eq. (22) is shown in Fig. 3.

The Green's function is oscillatory in the region between plasma resonance

and the upper hybrid cutoff point beyond which it decays exponentially as

expected from WKB analysis. In the overdense region of the plasma the Green's

function decays exponentially away from the source. Viewing the Green's

function as representing physically a grid Imersed in the plasma driven by

a constant current source of amplitude -tw it is clear that the plasma

response is purely capacitive. The capacitive impedance of the plasma, which

can be found from Eqs. (28a) or (28b), yields an effective plasma capacitance

per unit area, C/A, given by

(C/A) - (JI) 4irL L i(-Ht 0) U(j+1,1,JCoj) (29)

This expression illustrates that the plasma response depends upon the zero

°, order density gradient scale length and the details of the electrostatic mode

structure.

At this point it is worth noting that the retention of terms resulting

from changes in the parallel component of the plasma dielectric is crucial to

obtaining these results. Neglecting the term in Eq. (3) proportional to

9 e,, leads to erroneous results in at least two ways. First the behavior
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of the electrostatic modes near resonance would be found to diverge at

nonquntized values of Ik.1 as z71 rather than the correct ln(z) divergence.

This illustrates that near resonance the plasma can not be treated as locally

homogeneous. Second, the differential operator would be non-adjoint and

any subsequently derived Green's function would be incorrect and more diffi-

cult to obtain than the correct one.

The Green's function presented here, which is derived from the cold

plasma equations, is valid only for discrete values of k at which the

quantity r(a) Is infinite. At other values of Ik.] the solutions to the

cold plasma differential equation have. a logarithmic singularity at plasma

resonance. Actually, however, the amplitude of the electrostatic oscillations

remains finite at resonance because the plasma has a non-zero temperature.

Temperature dependent effects lead to the ecitation of Boha-Groas modes near

plasma resonance. These thermal modes carry energy down the density gradient

away from resonance and thus limit the amplitude. Such a mode conversion pro-

cess is described matheatically by the fourth order differential equation that

arises from Eq. (3) if thermal terms are retained in t,,. The investigation of

the solutions to the fourth order equation is the subject of another paper 5 but

for completeness, we note here that the ratio of the amplitude of the hot

mode 8enerated near resomance to the cold mode away from resonance is pro-

portional to I/r(a). Thus the amplitude of the hot mode is zero at the

quantized values of I k , consistent with the results presented here.

As we have Indicated the source of excitation must be in the over-

demse region of the plasma. Even at the quantized values of Ik.j purely

cold solutions can not be constructed for the source in the underdense region

.r
1 . " ; - : ." " . .i . i . . . ." : : . .i i, . , -- _ . - - - .. . . . ,.,, .,. , . - - . .- .. , . -



. .

-14-

because of the inherent singularity at resonance in the solutions U(B4 ,I,-F;)

The problem is quite clearly not symmetric. Obtaining a suitable expression

for the Green's function for Co > n again requires the retention of thermal

effects. The solutions to the fourth order differential equation remain

bounded at the resonance because of production of hot modes through mode

conversion. However, finding the Green's function in this case is much more

complicated because four modes rather than two can be excited in the plasma.

SWe are currently investigating this rather complex problem.

The suppression of mode conversion at discrete values of IkLI means

that the plasma acts essentially as a loss-free waveguide. The wave energy

is transported perpendicular to the field lines and density gradient. The

long wavelength cold modes are not subject to Landau damping whereas the short

wavelength Bohm-Gross modes created through mode conversion are. The experi-

mental investigation of the waveguide-like property of the plasma can be

carried out in present laboratory devices or the effect may be observable in

absorption experiments conducted in the auroral ionosphere.

From the limited study reported here it is evident that fundamental

differences exist between resonant absorption in a magnetized and umagnetized

* plasma. In the unmagnetized plasma short wavelength Bohm-Gross modes are

excited by direct coupling of external electromagnetic energy to plasma reso-

o nance. In the magnetized plasma excitation of Bohm-Gross modes can take

place indirectly through mode conversion from cold modes and Is suppressed for

- certain angles of propagation. Thus the introduction of a magnetic field in

the plasma produces not just a change in the angular dependence of Bola-Cross

excitation but introduces a fundamentally different physical mechanism for

the production of these modes.
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Figure Captions

Figure 1. Schematic of geometry considered in this study. The plasma

density gradient VN points along the magnetic field B . With0 -0

w > 0, the plasma resonance point at w is near the upper hybrid

point, uh"

Figure 2. Schematic indicating the relative location of the source, plasma

resonance, w , and upper hybrid cut-off, wh" To obtain bounded

cold solutions the driving source must be located in the over-

dense region (w > u). No is the plasma density.

p

* Figure 3. Example of spatial dependence of a cold waveguide Green's function

for j - 3. The location of the source, plasma resonance, wp, and

upper hybrid cut-off, Wuh, are indicated. The mode is finite

everywhere and oscillatory between the w and wuh points. * is

an arbitrary scaling factor.
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